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1. Introduction
Motivation :

understand nucleon structure from first principle

We calculate matrix elements related to nucleon structure on Nf = 2+1

DWF configuration.

• gA/gV
Well determined experimentally: gA/gV = 1.2673(35)

• Moments of quark distributions

Deep inelastic scattering; structure functions

〈x〉q → Unpolarized: F1(x, Q2), F2(x, Q2)

〈x〉∆q → Polarized: g1(x, Q2), g2(x, Q2)

• Form factors

Elastic scattering

F1(q
2) =

1

(1 + q2/M2
V )2

, 〈r2ch〉 = 12/M2
V ,

GA(q2) =
gA

(1 + q2/M2
A)2

, 〈r2ax〉 = 12/M2
A
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RBC-UKQCD generated Nf = 2 + 1 dynamical configuration.

1. u, d quark mass is as lower as mπ = 310 MeV.

Investigation of nucleon structure in chiral regime

2. Chiral symmetry on lattice

3. Physical volume 3 fm
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Chiral symmetry on lattice
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If chiral symmetry is exact,

ZV = ZA at chiral limit.

ZV is determined by

Nucleon form factor

ZV g lat
V = F1(0) = 1

ZA is determined by

Conserved axial-vector cur-

rent A0

ZA is consistent with ZV within 2% at chiral limit.
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Finite volume effect of nucleon matrix element

gA/gV is a simple, basic physical quantity of nucleon structure.

It is easy to calculate with DWF due to ZV /ZA ≈ 1.

Vµ

Aµ
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Large finite volume effect is

seen in heavy mπ region.

gA/gV at 2.4 fm almost

agrees with one at 3.6 fm.

L ≈ 2.5 fm is enough for nucleon calculation.
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RBC-UKQCD generated Nf = 2 + 1 dynamical configuration.

1. u, d quark mass is as lower as mπ = 310 MeV.

Investigation of nucleon structure in chiral regime

2. Chiral symmetry on lattice

ZV = ZA is satisfied within a few %.

3. Physical volume 3 fm

Volume is large enough for nucleon calculation, based on Nf = 0

calculation.
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3. Simulation parameters

• Nf = 2 + 1 Iwasaki gauge + Domain Wall fermion actions

• β = 2.13 a−1 = 1.62 GeV M5 = 1.8 mres = 0.003

• Lattice size 243×64×16 (La ≈ 3 fm)

• ms = 0.04 fixed (close to m
phys
s )

• quark masses and confs.
mf mπ[MeV] # of confs. × Nmeas

0.005 310 52 × 4

0.01 390 119 × 4

0.02 520 49 × 4

0.03 690 53 × 4
Results at two lighter masses do not have good accuracy, so that

all results are preliminary.

• We focus only on iso-vector quantities. (no disconnected diagram)
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4. Preliminary results
4.1. gA/gV
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mπ is lighter than mπ in

Nf = 0 case.

Results at two lighter mπ

has larger error and fluctu-

ation.

There seems to be no dy-

namical effect.

Preliminary result

gA/gV =

{

1.22(10) (lat.)
1.267(4) (exp.)

We will confirm the result is reliable by improving statistics.
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4.2. Moments of quark distributions
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Unpolarized : 〈x〉u−d
Polarized : 〈x〉∆u−∆d

If chiral symmetry is exact,

renormalizations of 〈x〉u−d

and 〈x〉∆u−∆d are same.

Result is consistent with ex-

periment as well as in Nf =

0 case.

However, ...
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4.2. Moments of quark distributions (cont’d)
Each component in Nf = 0 is independent of mπ.
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〈x〉u−d and 〈x〉∆u−∆d are closer to experiment, and have some mπ de-

pendence.

Perturbative Z(2GeV) = 0.88(5) from PLB641,67

→ We will calculate Z factor by non-perturbative method.

Preliminary result
10



4.3. Form factors
Iso-vector form factors F

p
i − Fn

i

〈N, p|Vµ(q)|N, p′〉 = 〈N, p|F1(q
2)γµ + iσµνqν

F2(q
2)

2MN
|N, p′〉

〈N, p|Aµ(q)|N, p′〉 = 〈N, p|GA(q2)iγ5γµ + iγ5qµGP (q2)|N, p′〉

q = p′ − p,

(

Lp′

2π

)2

= 0,1,2,3,4

F1(q
2) =

1

(1 + q2/M2
V )2

, MV = 0.858(8) GeV

〈r2ch〉 = 0.636(12) fm

GA(q2) =
gA

(1 + q2/M2
A)2

, MA = 1.07(2) GeV

〈r2ax〉 = 0.408(13) fm
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4.3. Form factors (cont’d)
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F1 is almost independent of mπ except for lightest mass.

GA has mπ dependence.
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4.3. Form factors (cont’d)
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4.3. Form factors (cont’d)
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4.3. Form factors (cont’d)
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4.3. Form factors (cont’d)
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4.3. Form factors (cont’d)
Effective MV and MA Preliminary result
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Effective MV and MA are reasonably flat.

MV is almost independent of mπ except for lightest mass.

MA has mπ dependence.
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4.3. Form factors (cont’d)
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4.3. Form factors (cont’d)
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4.3. Form factors (cont’d)
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4.3. Form factors (cont’d)
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4.3. Form factors (cont’d)
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F2 at lightest mass is below experiment.

Normalized GP by pion pole and GA is almost consistent with current

algebra, and close to experiment.
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Preliminary result
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5. Summary

• We calculated nucleon matrix elements with Nf = 2 + 1 dynamical

domain wall fermions at light quark masses.

• All results are preliminary.

• We found encouraging and consistent results with experiments.

Future work

• We will improve statistics of mf = 0.005 and mf = 0.01 data.

• Next calculation is on larger lattice size and smaller lattice spacing.
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